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1. Introduction

The present report deals with a review of conceptual problems

which are of importance for a definition of precise reference systems

to be used for very accurate geodetic purposes, down to the centimeter

level (1 part in 108 or better).

This subject has recently found great interest. The IAU

Colloquium No. 26 on Reference Coordinate Systems for Earth Dynamics

in Torun' Poland, 26-31 August, 1974, was the first international

meeting devoted entirely to this topic. The papers collected in the

Proceedings of this meeting (Kolaczek and Weiffenbach, 1975) form a

basic source of reference for the present report. A particularly difficult

and controversial subject, important in view of the recent discussions

and resolutions of the IAU at its General Assemblies in Grenoble (1976)

and Montreal (1979) on the topic of astronomical nutation, is the proper

definition of the celestial pole. Basic recent references for this prob-

lem are (Leick, 1978), (Leick and Mueller, 1979), (Kinoshita et at., 1979),

and (Fedorov, 1979).

The review article (Kovalesky, 1979) has been found helpful in

preparing this report.

Particular thanks are due to Ivan I. Mueller for clarifying dis-

cussions and for providing relevant literature.

2. Physical, Conventional, and Average Systems

Let us start with a simple example familiar from plane survey-

ing (Fig. 2. 1). Let a number of points P1, P2 .... P be given in the

plane. Various choices of a rectangular xy coordinate system are

possible.

i) Physical Systems. -- Origin and direction of the coordinate

axes are realized physically. For instance, the origin 0 may coincide

with Pt and the x-axis be defined so as to pass through point P 2 . (Fig.2.2).
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Figure 2. 1 A plane coordinate system
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Figure 2. 2: A physically defined system
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Another choice of a physically defined coordinate system would be the

following: the origin 0 coincides again with a given point Ps, but the

x-direction is realized by magnetic north as given by a magnetic com-

pass (Fig. Z. 3). If the direction of magnetic north differs from point

to point, then we may select as x-axis the direction of magnetic north

at P1 .

magnetic north

P2
Ph N

Pt=O3
P, =0

Figure 2.3 Another physical definition

ii) Conventional Systems. -- In plane surveying, one frequently

works with a coordinate system which is arbitrarily situated with respect

to the points under consideration and whose axes has an arbitrary

direction, such as shown in Fig. 2. 1. Such a system is, for instance,

defined by assigning to Ps arbitrary coordinates (xI, yj) and to the line

PIP? an arbitrary direction angle.

iii) Average Systems. -- In choosing P1 as the origin, we may

seem to show undue preference to one of the n given points. A pro-

cedure for treating all points equitably consists in placing the coordin-

ate origin at the center of mass S of the n points:
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S: x = x i , Yi (2-1)
1 11

so that x = 0 , y = 0 by definition. This determines only the origin;

the x-axis may still be chosen conventionally or physically. As an

example, assume that the direction of magnetic north D differs at the

various points P. ; then the x-axis could be chosen as the average1

magnetic north:
n

n 1
1

In the simple case in which the position of the points P,

P does not change with time, everything is obvious and the distinctionn

between physical, conventional, and average systems appears trivial

and pedantic, the more so as there is no clear border line between

these concepts and they frequently overlap.

Time variations. The situation becomes much more complicated

if we consider a variation of the position of points P. with time. Assume,1

for the moment, that in the course of time, each point P. describes a

certain curve (Fig. 2.4). After a certain time, the points P, and P2

will have moved to P 1 ' and Pz 1 , and a system xy, physically defined

according to Fig. 2.2, will have moved to the position x'y'. Even if

the remaining points P3, .... P did not change their position withn

time, their coordinates would still change because the coordinate

system changes. This shows that such a purely physical definition of

the coordinate system would be inappropriate in this situation.

Modeling of time variations. It may, however, happen that the

paths of movement of the points P. are known in some coordinate
1

system xy; more precisely we know the relative position

s(t) - x = Ax(t), y(t) - y = Ay(P) (2-3)

i L Ii- i i i ¢] i i l .. . . . . .. -- l i - . . .... . . . . .. ii
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X

p
P2  - " P2'
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Pil-

yI

Pt b..K

Figure 2.4: Time variations

of P. with respect to some fixed "initial position" P0 of this point.
1 I

Then the observed instantaneous position of any point can be reduced to

this fixed position by subtracting Ax

0

x x(t) - Ax(t) (2-4)

x = (x,y) representing the position vector.

These coordinates x, y refer to a system in which Ax(t) is given;

it is thus a system which a priori given rather than operationally

defined. Using our present terminology, it will be a conventional

system.

Averaging of the residuals. It is realistic to assume that the

point paths cannot be completely modeled; even after subtracting "x(t)

according to (2-4), the coordinates so obtained will not be completely

time-independent, or in other terms, the residuals

6x(t) = x(t) Ax(t) - x 0 (2-5)
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will not be zero. We thus have

x(t) = x_ + Ax(t) + 6x(t) , (2-6)

which is the basic decomposition of the real x(t) into:
0

1) a constant part x independent of time,

2) a functional part 4c(t) which can be modeled

by a known functional expression, and

3) unknown residuals 6x(t).

It can he hoped that Ax(t) models the time-dependent effect so well

that the residuals will be small and irregular.

Still, even after subtracting the functional effect Ax(t), it may

not be appropriate to select one of the points, say P 1 , as the coordinate

origin 0, because residual motions of P, will then distort the coordinate s

of all the other points. If the residuals 6x are really irregular with-

out showing a trend, then it may be a good solution to place the origin

O at the center of mass of the points P. , using the definition (2-1)1

with x. replaced by x, -Ax. • Then the system will be defined in such

away that it is little affected by random residual motions.

Physical versus conventional definitions again. To get a good

intuitive understanding of the problem, let us consider another example.

A geodetic reference ellipsoid should approximate the geoid reasonably

well but it need not be the best approximation of the geoid by an ellipsoid.

The latter ellipsoid would be the mean earth ellipsoid which is uniquely

defined physically2 (Heiskanen and Moritz, 1967, sec. 2-21). However,

such an empirically determined mean earth ellipsoid would not be

suitable as a reference ellipsoid for practical geodetic purposes, because

its parameters change with every improvement of relevant measurements;

I Such a physical definition involves certain fundamental constants; it

satisfies, however, also the condition that the average value of the
geoidal height over the whole earth is zero; a curious interplay of
"physical" and "average" aspects!
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on the other hand, a practical reference ellipsoid should not be changed

if possible because an enormous amount of data is based on it.

Therefore, a proper reference ellipsoid will be defined conven-

tionally but in such a way that it is close to a physically defined

mean earth ellipsoid.

Astronomical observations. As a final example, take astronomical

observations, say time observations by means of a transit instrument

(Mueller, 1969, p. Z50). In the "ideal" case, the axis of the instrument

should be horizontal, and the plane formed by successive positions of

the line of sight should coincide with the meridian plane. Both

"physically" defined conditions cannot be exactly met; rather than

trying indefinitely to adjust the instrument to this "physical" position,

the instrument is set up in an arbitrary, "conventional", position which

is close to the physical one; the deviations from the latter are then

taken into account by appropriate corrections. Again we may say that

the reference axes for such observations are "conventional" but close

to the "physical" position.

Preliminary remarks on a terrestrial reference system. For

low accuracy requirements, we may consider the earth a rigid body

which turns with constant angular velocity around the axis of maximum

inertia. Then this axis of rotation would be a natural choice for the

z-axis of a three-dimensional rectangular coordinate system xyz; the

origin could be placed at the earth's center of mass; and a point

rigidly connected to the earth's surface would define the xz-plane by

requiring that this plane passes through the given point. This would

be a proper physical definition.

The actual situation is enormously complicated by the fact that

the earth is not rigid but has a shape that varies with time, and that

the rotation axis differs from the axis of maximum inertia; neither the

direction of the rotation axis nor the speed of rotation are constant.
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In the sequel we shall discuss this problem at length. Here

we remark only that a physical definition of the z-axis, either as the

instantaneous rotation axis, as the axis of maximum inertia, or in

some other way, is still theoretically possible, but such a choice

would not be practically feasible. Therefore, one uses a conventional

definition of the z-axis, presently the so-called Conventional International

Origin (CIO). Similarly one does not use one observatory to define the

zero meridian, but an average over a number of stations. The origin

is at the physically defined center of mass of the earth.

Thus, practical terrestrial reference systems will again combine

conventional, physical, and average aspects

It may be asked (and has been asked) whether such a mixed

definition is theoretically valid and does not possess internal inconsis-

tencies. The answer is that, if everything is done properly, the system

will be theoretically as "clean" as any other system. The deviations

of the physical axes from their conventional counterparts can be taken

into account by small corrections (such as also seen in the examples

of a geodetic reference ellipsoid and astronomical instruments). Averag-

ing is, of course, only to be introduced when the geometry is not violated,

for instance for determining the zero meridian where there is only the

question of fixing a constant rotation around the z-axis.

3. Inertial Systems -- Classical Theory

Assume that in a certain cartesian spatial coordinate system

xyz, the equations of motiu for a mass point have the Newtonian form:

= x, = Y. z z (3-1)

where dots indicate differentiation with respect to time:

dx d2xx d- ,- etc. (3-Z)
d t

and X, Y, Z are the components of the external force in the xyz system.

1.
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Frequently it is more convenient to introduce index notation and write

x = x1, y = x? z = x 3  (3-3)

and similarly X = X1, etc., so that (3- 1) becomes simply

X = x ( = 1, Z, 3). (3-4)11

A coordinate system in which the equations of motion have the

Newutonian form (3-1) or(3-4) , is called an inertial system.

If xyz is an inertial system, and if x'y'z' is another cartesian

coordinate system which has a uniform translational motion (that is,

without acceleration or rotation) with respect to the system xyz, then

x'y'z' is likewise an inertial system.

Matters will be different as soon as the system x'y'z' accelerates

or rotates with respect to the inertial system xyz: then the equations

of motion will no longer have the simple form (3-1), and x'y'z' will not

be an inertial system.

A spatial system xyz "fixed with respect to the stars" (this

loose expression will be refined later) can be considered an inertial

system; a system x'y'z' connected to the earth rotates relative

to xyz and is thus not inertial.

The equations of motion for a rotating frame contain rotational

terms such as the centrifugal "force" and the Coriolis "force" ; cf.

(Synge and Griffith, 194Z, p. 343). These terms are not real forces

but only express the fact that the coordinate system is no longer

inertial. Therefore, such fictitious "forces" are also called inertial

forces. This terminology is well established although the expression

"rotational terms" would be more appropriate.

The ephemerides of the planets and the moon are calculated by

the integration of equations of motion of the form (3- 1). Thus they

refer to an inertial system. Inversely, observations of the planets

or the moon in combination with calculated ephemerides can be used

to establish an inertial system, as will be shown in Section 5.
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Quasi-inertial systems. Consider again a system x'y'z' moving

uniformly with respect to an inertial system xyz. This means that

the displacement of x'y'z' with respect to xyz occurs with constant

speed and in such a way that the respective axes remain parallel to

each other; we may also speak of a uniform translation, which is a

parallel displacement along a straight line with constant velocity. In

such a case, the system x'y'z' will again be inertial, as we have seen.

Consider now the case that the system x'y'z' undergoes a non-

uniform translation with respect to xyz. This means that the movement

is such that the axes x'y'z' remain parallel to xyz but the origin 0' of

x'y'z' may have a curvilinear accelerated motion with respect to the

system xyz (Fig. 3. 1). In this case, x'y'z' will no longer be an

inertial system.

ZI

z/
y

Figure 3. 1 A quasi-inertial system

However, it shares with an inertial system the property that

the direction of the coordinate axes does not change with time: the

system x'y'z' has no rotation with respect to the xyz frame. Now in

astronomy generally it is the direction which really matters: there-

fore, for astronomical purposes the system x'y'z' behaves very much
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like an inertial system; we may call it a quasi-inertial system.

An important example of such a quasi-inertial system is a

system whose direction remains unchanged with respect to the stars

and whose origin is at the earth's center of mass. Since the earth

describes a nearly elliptic path around the sun, which is a curvilinear

nonuniform motion, such a system is quasi-inertial rather than strictly

inertial.

Axes which always remain parallel to a fixed direction can be

realized by means of a gyroscope; the axis of an ideal drift-free

gyroscope keeps its direction regardless of the motion of the gyroscope

in space. Therefore, a coordinate system defined by gyroscopes is

another physical realization of a quasi-inertial system. This is import-

ant in inertial positioning systems (Section 5).

Quasi-inertial systems are characterized by the fact that for

them the equations of motion do not contain any rotational term. This

does not yet mean, however, that they have the simple form (3- 1):

there will be additional terms which represent the effect of an accelera-

tion of the coordinate system; cf. (Synge and Griffith, 1942, p. 344).

4. Inertial Systems -- Relativistic Aspects

A refinement of classical mechanics is provided by the special

and the general theory of relativity. It turns out that for most practical

purposes of geodesy, geodynamics, and space dynamics, classical

mechanics is sufficient; if relativistic effects are relevant at all, then

they can be taken into account by very small corrections.

It is, however, of great conceptual significance to understand

the situation well also from the point of view of the theory of relativity.

Since most textbooks on general relativity put more emphasis on other

topics, it may be appropriate to review the impact of relativity on the

problem of reference systems in some detail. The reader who is not

interested in relativistic aspects may omit this section.
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We shall mainly use the books (Misner et al., 1973) and

(Ohanian, 1976), as well as the report (Moritz, 1967). The paper

(Blais, 1978) also contains a brief treatment of relativistic aspects

in reference frames.

Inertial systems in special relativity. In the special theory

of relativity, inertial systems play a basic role as privileged coordinate

system in space-time: in such a system, the four-dimensional line

element has the simple form

ds2 = dxZ + dyZ + d' - cdt? 1 d 3 (4-1)

Here x = x1 , y =x., and z =x 3 denote rectangular coordinates in space,

t designates the time, and c denotes the constant velocity of light in

a vacuum; we have put x4 = ict, where iz = -1. As in classical

mechanics, a reference system moving with constant velocity with

respect to an inertial system, is again an inertial system.

Transformations between inertial systems are such as to leave

the line element (4-1) invariant (unchanged); the set of such "Lorentz

transformations" form a group, the Lorentz group, which describes

the symmetry of the space-time of special relativity.

No inertial systems in general relativity. The special theory of

relativity holds only in the absence of a gravitational field. Gravita-

tional fields are treated by the general theory of relativity. Here the

line element has the form

4 4

d Sz = 1 Z &Pg i dxx =y - dXofdx# (4-.2)
ds r I P I W ~~l f

where x denotes coordinates x1 , x2 , x3 , x4 in space-time, which will

in general be curvilinear rather than rectangular. The g. are functions

of these coordinates. Indices such as a and 0 run from 1 to 4; lower

indices are called covariant, and upper indices, contravariant. The

Einstein summation convention, which will be used in this section,

prescribes summation with respect to any index that occurs in both an

upper and a lower position, as shown in Eq. (4-2).
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The coordinates x now have upper indices because the differentials

dx fonn a "contravariant vector".

The line element (4-2) relates to (4-1) in much the same way

as a line element on a curved surface,

ds z = Edu2 + 2F dudv + Gdv2 , (4-3)

relates to a line element in the plane,

dsz = dxz + dy2  (4-4)

Here u,v are curvilinear coordinates and E,F,G form the "metric tensor"

(4-5)

In space-time, the metric tensor [g.] is a 4x4 matrix, so that there

is full analogy between the general forms (4-2) and (4-3) on the one

hand, and between the "inertial forms" (4-1) and (4-4), on the other hand.

In a way, the general theory of relativity is nothing else but an extension

of the theory of two-dimensional surfaces to four-dimensional space-time.

This analogy will help understand an important point. On a

curved surface one can introduce coordinate which, in an infinitesimal

neighborhood of a point, give a line element

dsZ = du2 + a 7 (4-6)

which has the same form as the plane element (4-4). Geometrically,

this means that, in a small neighborhood of this point, the surface is

approximated by its tangent plane.

However, it will not be possible, in general, to introduce

coordinates in such a way that the "inertial form" (4-6) holds on the

whole surface (or even in a finite part of it).

Transferred to four dimensions, this reasoning shows that, in a

curved space-time, it will be possible to introduce coordinates which
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correspond to an inertial system in an infinitesimal neighborhood of a

point; but it will be impossible to introduce an inertial system that is

valid for the whole space-time.

In this sense, there are no inertial systems in general relativity.

All possible coordinate systems are, in principle, equivalent; there

are no privileged systems. This is Einstein's Principle of General

Covariance, or General Relativity.

Another important principle in this theory is the Principle of

Equivalence, according to which gravitational and inertial forces (such

as the centrifugal or the Coriolis force) are basically identical: both

are effects of a deviation of the coordinate system of line element (4-2)

from an inertial system of line element (4-1). Thus gravitation is

interpreted geometrically as an effect of the curvature of space-time.

Both the Principle of Equivalence and the Principle of General

Covariance have played a fundamental heuristic role in Einstein's

considerations leading to his theory of gravitation around 1915 bec Luse

these principles provide a natural transition from the flat space-time

of special relativity to the curved space-time of general relativity.

Einstein's heuristic procedure is still the best way for understanding

this theory; hence it is strongly emphasized in almost every textbook

on general relativity.

However, the relativistic treatment of reference systems

requires some subtler distinctions which show that, after all, privileged

systems can be introduced which serve as practically satisfactory

approximations to inertial systems, both on a local and on a global level.

There is also an analogue of the "quasi-inertial systems" introduced

in the preceding section.

Local inertial systems. Just as a curved surface can be

approximated locally by a tangent plane, so curved space-time can be

approximated, in the neighborhood of a certain point, by a tangent

"plane" space-time in which an inertial system can be introduced.
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Thus, in a certain "small" region, inertial systems are possible even

in general relativity. Since our space-time is only very slightly

curved, the gravitational field in the solar system being very weak,

the "small" region just mentioned certainly covers the solar system

and even extends well beyond. According to Eddington (1924, pp. 99)

a local inertial system will deviate from a global system by about 2

seconds of arc in a century.

Global nearly-inertial systems. The application of the relativistic

theory of gravitation to the region of our solar system requires bound-

ary conditions at infinity: with increasing distance from the attracting

masses the effect of gravitation vanishes, and the curved space-time

becomes flat at infinity. This fact permits the introduction of uniquely

defined privileged systems, the harmonic coordinate systems. These

systems rigorously refer to curved space time. At infinity they reduce

to inertial systems of form (4- 1), and within the solar system they

approximate inertial systems practically very well.

In this sense, the harmonic coordinates form a priviiegtd

coordinate system, which is a natural generalization of an inertial system

to curved space-time. This has been particularly emphasized by Fock

(1959).

Quasi-inertial systems and Fermi propagation. In the last section

we have introduced "quasi-inertial systems". They are three-dimensional

cartesian systems whose origin is moving arbitrarily but whose axes

remain always parallel; a physical realization is by means of axes

whose direction is stabilized by means of gyroscopes. The underlying

principle is that the axis of a freely spinning gyroscope maintains its

direction even if its frame is accelerated or rotated; furthermore, the

axis is unaffected by gravity.

This concept of a quasi-inertial frame can be defined also in

general relativity. The relevant concept is Fermi propagation, or

Fermi-Walker transport, which is considered in detail and used extensively

L .. . . . . . . . . .. ... _ . .. .. ... ,,
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in (Synge, 1960). It is also treated in (Misner et al., 1973, p. 170),

but hardly elsewhere in standard textbooks. Therefore we shall briefly

consider it here, following (Moritz, 1967).

The equation of Fermi-Walker transport may be written

=a X0 ( u - -- (-7- (4-7)
s T 6s

(Synge, 1960, 1. 13). Here Xi (or X) are the contravariant (or

covariant) components of the vector undergoing Fermi propagation,

related by

&- g= 90 . (4-8)

The vector u is the four-velocity

u a a (4-9)
ds (

The unit vector of the tangent to the world line of the particle to which

the vector X is attached (Fig. 4. 1). The symbol 6 denotes covariant

differentiation:

au
u

Figure 4. 1 Fermi-Walker transport
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+ r 0 X (4-10)
6s d s

where r are the Christoffel symbols, and analogously for 6u*/6s.

In our case, the vector X o represents the spin axis of the

gyroscope. It lies in the instantaneous three-dimensional space of the

spinning particle and is therefore orthogonal to u :

u*X = 0 (4-11)

Hence (4-7) reduces to

8  X - 6u . (4-12)

This equation holds for Fermi-Walker transport of a space-like vector

satisfying (4-11). It expresses the fact that the change 6X /16s has

the direction of u and consequently has no component in the instantane-

ous three-space of the observer. Thus the change of X is purely in

time: the vector X a remains unchanged ix' space, it is transported

parallelly. This shows that Fermi propagation is related to spatial

parallelism.

Consider now a system of three mutually orthogonal space-like

vectors X1, each of which is represented by the axis of a freely spin-

ning gyroscope. In this way the axes of a rectangular xyz system

which is transported parallelly in space, may be realized physically.

It can be shown (Moritz, 1967, p. 47) that the change 6X /8s

is small of order c -Z , c being the velocity of light. To this accuracy,

the direction of Fermi-propagated axes remains constant in space; it

furthermore is practically unaffected by the gravitational field.

This shows that gyroscopically stabilized "quasi-inertial systems"

are possible even in the context of general relativity.

L__
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Separation of gravitation and inertia. After this discussion of

"privileged" coordinate systems which seem to contradict the Principle

of General Covariance, let us now briefly remark on the separation

of gravitational and inertial forces, which seems to violate the

Principle of Equivalence.

This question is related to the problem of reference systems

only indirectly; furthermore it has been dealt with rather fully in two

reports (Moritz, 1967, 197 1); therefore we shall be very brief.

The Principle of Equivalence states that, because of the

identity of gravitational and inertial mass (shown experimentally by

R. E&v 6 s around 1900 for an accuracy of 5 x 10 1) the resultant

of gravitational and inertial forces acting at one point cannot be

separated into a gravitational and an inertial part; both are equivalent

and cannot be distinguished.

Matters are different if we consider, not only one point, but a

region in space, which may be arbitrarily small. In the theory of

surfaces, the Gaussian curvature K provides a criterion for distinguish-

ing a curved surface from a plane, depending on whether K is nonzero

or zero. The generalization of the Gaussian curvature to four

dimensions is the Riemannian curvature tensor R O76 ; again, space-

time is flat if Roy6 = 0 and curved otherwise. Now, curvature of

space-time is an objective criterion for the presence of a genuine

gravitational field, so that, according to (Synge, 1960, p. 109), we

may write

RO,6 gravitational field (4-13)

The Riemann curvature thus provides a criterion for the presence

of a gravitational field, but not yet a means for the separation of gravi-

tational and inertial effects. In flat space-time, inertial forces have

an objective significance since they are due to the deviation of the

observer's coordinate system from an inertial system. Similarly in a
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weak gravitational field, a separation of gravitation and inertia is

feasible if we succeed in introducing a privileged coordinate system

similar to an inertial system. In this way, the separation of gravita-

tion and inertia is intimately connected with the question of an "almost"

inertial reference system, such as the harmonic system mentioned

above.

We finally point out that in such a system there is approximately

(Moritz, 1967, p. 43)

c 2 Ri 4 4  (4- 14)

where i and j are spatial indices running from 1 to 3. Thus, second-

order gradients of the potential V are purely gravitational. In (Moritz,

1971) we have shown that using a combination of accelerometers,

measuring first-order gradients, and gradiometers, measuring second-

order gradients, a separation of the gravitational signal from inertial

disturbances can be effected even with first-order gradients, that is,

in the gravitational force.

Cosmological questions. For a homogeneous and isotropic

universe, the line element (4-2) has the form (Bondi,' 1960, p. 10Z):

ds' = dtz- [R~t)]? dx2 + dy? + dz2  2 (4-15)

d [R(t [1 + (k/4)(x2 +yz + z 2))

Here R(t) is a time-dependent scale factor by means of which the

expansion of the universe can be described. The constant k may have

the values +1, 0, or -1. For k = 0, space is Euclidean; for k =1,

space has constant positive curvature, and for k = -1, constant

negative curvature. The space-time described by (4- 15) is called the

Robert son-Walker model. '

I For k = 0 and R = c-1 , (4-15) reduces for (4-1), apart from the
irrelevant factor (-cz).
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This model appears well suited to describe mathematically the

large-scale space-time structure of the universe, apart, of course,

from "local" gravitational irregularities such as caused by our solar

system.

On the basis of present observational data it is not possible

to decide clearly whether k is positive, negative or zero, although

there is some indication that space may have negative curvature, cf.

(Ohanian, 1976, p. 416).

At any rate, Robertson-Walker space-time will not in general

be the flat space-time of special relativity (4-1). Thus, strictly

speaking, inertial systems in the usual sense will not exist. This

leads us to the following paradox: The most accurate means of

practically establishing an inertial system is VLBI using quasars;

however, quasars are a typical phenomenon of an expanding universe

which is described by the curved space-time (4-15) for which no inertial

systems exist'

However, this paradox is a theoretical curiosity rather than a

fact of practical significance. Indeed, as we have seen above, all

our practical inertial systems are nonrigorous in the sense of general

relativity but still perfectly useful. For the region of our galaxy,

we may easily consider space-time to be essentially flat, apart from

local gravitational irregularities. The same holds a forteriori for

our solar s;rstem. Furthermore it is possible to study cosmology

within the frame of special relativity and even of classical mechanics

(Bondi, 1960, chapters XI and IX).

Relativistic effects. (Above we have secn that rotation is an

"absolute" phenomenon in "general relativity" t , being almost the same

as in classical mechanics. Geodesics are not absolute in this sense

1 In fact, Fock (1959) and Synge (1960) have pointed out that this
name is actually a misnomer; the name "geometrodynamics" (J. A.
Wheeler) appears to be more appropriate.
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since planetary orbits are geodesics in general relativity but ellipses

(and not straight lines which would be geodesics) in classical

mechanics. However, null geodesics representing light paths do appear

as three-dimensional straight lines (to order V/cZ); and also time, to

the same order, is identical to the time in classical mechanics. The

same holds for light velocity in a vacuum.

Thus, the concepts: straight line (as represented by alight ray),

time, light velocity, and rotation are practically the same in general

relativity as in classical geometry and mechanics. Hence, to an

accuracy of V/c? , the definition of reference systems (which is done

in terms of these concepts) is practically the same as in classical

mechanic s.

What is the order of magnitude of V/c 2 ? The gravity potential

W at the surface of the earth is approximately

W = 6.3 x 107 mIs - Z

cf. the value U0 given in (Heiskanen and Moritz, 1967, p. 80); for the

present purpose, the gravitational potential V and the gravity potential

W (including the centrifugal force) are nearly equal. Then

V • W _ 6.3 x 107 m 2 s 2

-c = c-7 -  - (3x 108 ), ) 0.7 x 10- 9  (4-16)

Thus we may say that, in the neighborhood of the earth,

general-relativistic effects 10 - 9  (4- 17)

In general, this will be below the level of 10 - 8 which can reasonably

be expected for high-precision geodetic and geodynamic work in the

near future.

So much for general-relativistic effects related to the presence

of a gravitational field. There are also effects of special relativity

which become significant for high velocities v. They have the order

(v/c)2 . Assume



v = Z9.8 kms - I = 10- '1 c (4-18)

which is the velocity of the earth in its orbit around the sun. Then

: 10-8 (4-19)
c

which is of a similar order of smallness as (4-17).

Thus, relativistic effects are so small that it is difficult to

measure them. Some of them furnish experimental tests of the general

theory of relativity and are then well covered in the textbook litera-

ture. We shall, therefore, limit ourselves to a few brief remarks.

Time. Since time can be measured by means of atomic clocks

far more accurately (of order l1*or better) than any other

relevant quantity, relativistic effects can be shown here quite well.

Since the proper time T of the clock is related to coordinate time t

by

dT =(I - W) at (4-20)

c

we havc

dt-dT = W - 0.7 x i0-9 (4-21)
dt c

Thus atomic clocks depend on the potential in a similar way as

the old pendulum clocks depended on gravity, through incomparably

less. Just as gravity, or better gravity differences, can be measured

by means of pendulums, so the potential, or better potential differences,

can, in principle, be measured by atomic clocks.1

Of such nature is the experimental by Pound and Rebka described

in (Misner et al., 1973, p. 1057) and (Ohanian, 1976, p. 212), which

tit would, however, be premature to hope for a new geodetic instru-
ment measuring potential differences in this way: 1 cm in elevation
would correspond to 10- 18 in time'
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measures the gravitational redshift of V-rays using the M~ssbauer

effect and hence the potential difference. (Redshift occurs if the

"clock" represented by the emitting source is slower .)

Thus, highly precise atomic clock readings must be reduced

by the factor W/c 2 to refer tnem to a common standard.

Related phenomena are the time delay of radar echos from

Mercury, Venus, and Mars due to their gravitational fields as measured

by Shapiro and others (Ohanian, 1976, p. 128), and time dilation

experiments measuring the redshift of different spectral lines of the

sun and other stars (ibid., p. 214).

Another question is the relation between Atomic Time (AT) and

Ephemeris Time (ET). Conceptually, AT is the time of quantum

theory, and ET is the time of mechanics (classical or relativistic). If

General Relativity is correct, then AT = ET. On the other hand ,

(Duncombe et al., 1975, p. 232) state that empirical observations

tend to indicate that these two time scales are not equivalent. As an

explanation they suggest that the gravitational constant G decreases at

a rate of about 10 - to per year. This would mean that even Einstein's

theory of gravitation would have to be generalized (theories of Jordan

and Brans-Dicke); cf. (Misner et al., 1973, p. 1070) and (Ohanian,

1976, pp. 187-188).

Length. The present definition of the meter in terms of a

certain multiple of the orange line of krypton will probably be given

up in the near future. It will be redefined in terms of the atomic

second and the velocity of light, of which the presently accepted value

is
c (299 792 458 ± 1.2) ms" (4-22)

(Moritz, 1975); this indirect definition of length will be more accurate.

In fact, since c is accurate to about 4 parts in 109, the new

definition of length will be as accurate (time being defined with superior

precision). Relativistic effects are below this level, so that the
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inf luence of these effects on length will be negligible still for some

time.

Light rays. Light rays can be regarded as straight except

under unusual circumstances. Classical is the deviation of a light

ray grazing the sun during an occultation. Modern results concerning

this phenomenon and concerning analogous deflections of radio waves

are given in (Ohanian, 1976, pp. 124-125); the order of magnitude

is 1-2 seconds of arc.

Gyroscopic effects. Above we have seen that gyroscopes

undergoing Fermi-Walker transport behave very much as in classical

mechanics. Small relativistic effects ("geodetic precession") are

described in (Ohanian, 1976, pp. Z9Z-Z98).

Influences on planetary motion. The classical example is the

precession of the perihelion of the orbit of the planet Mercury (about

40" per century). There are also periodic relativistic effects in

earth-moon separation on the order of I m, which can be measured

by lunar lasar ranging (Misner et al., 1973, p. 1048).

5. Tnertial Systems -- Practical Realization

Inertial systems can be realized either geometrically or dynamic-

ally. In the geometrical realization, one uses objects which are con-

sidered at rest in the inertial system under consideration. In the

dynamical realization, one uses objects (satellites, the moon, or planets)

which move in a way described by the equations of motion in the

inertial system to be realized.

The first statement is oversimplified and must be made more

precise. In astronomy one is mainly interested in directions, so

celestial objects (stars or quasars) can be used to define directions

even if they are not at rest but move only along the direction under

consideration. In other words, their motion should have only a radial

but no transversal component.
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The following review is primarily based on the papers collected

in (Kolaczek and Weiffenbach, 1975); the article (Kovalevsky, 1979)

has been found useful.

Stellar systems. Such systems are the best known since the

star coordinates (right ascension Cg and declination 6) tabulated in

astronomical catalogues are based on some stellar systems. The most

accurate stellar systems are FK4 and FK5, the latter being elaborated

now (Fricke, 1975). A detailed review is found in Chapter 6 of

(Mueller, 1969).

Right ascension a and declination 6 refer to an equatorial

coordinate system for which the z axis has the direction of the

earth's axis of rotation (the celestial pole, a precise definition of which

will be found in Section 7). Since the celestial pole changes due to the

effect of precession and nutation, the tabulated coordinates refer to

some epoch to.

This coordinate system is easily accessible through observa-

tions of stars and is, therefore, used in geodetic astronomy, photo-

grammetric satellite triangulation, etc.

However, the use of stellar systems is limited for various reasons;

imperfectly known proper motions of stars, errors in the formulas for

precession and nutation, etc. According to (Mueller, 1969, p. 197) and

(Fricke, 1975, p. 216) the standard errors in right ascension and

declination of the FK4 system, referred to the initial epoch, are about

+0.014" on the equator and increase to + 0.017" in the northern and

to +0.04" in the southern hemisphere. These errors represent only

the deviation of the FK4 from an ideal system; they do not include

proper motion errors etc.

An important phenomenon is the occurrence of residual rotations

of the stellar system. Any system based on the stars of our galaxy

will contain a rotation if the galaxy rotates as a whole with respect to

distant galaxies. To determine such a residual rotation, one may



either incorporate observations to visible extragalactic sources (quasars)

or observations of planets, thus combining the celestial system with an

extragalactic radio system or a dynamically defined inertial system (see

below). This leads to very difficult problems discussed in the papers

(Fricke, 1975) and (Duncombe et al., 1975).

Thus the long-term precision of a stellar system is limited to

about + 0. 1" per century.

In order to improve the accuracy of a stellar reference system,

observations in an astrometric satellite have been proposed by Bacchus

and Lacroute. It is hoped that these observations will determine star

positions to + 0.01" and eventually to + 0.001".

Extragalactic radio system. Such a system is defined by

positions of a number (perhaps ZO or more) of extragalactic radio

sources (quasars) whose relative positions are measured by very-long-

base-line interferometry (VLBI). These sources have large radial

motions due to the expansion of the universe but no observable trans-

versal motions (since quasars are so far away, transversal motions

would have to be enormous in order to be measurable).

In this way one can obtain a self-contained highly precise refer-

ence systems, which is independent of the classical stellar systems

but can be related to them as mentioned above. The accuracy of

such a VLBI-determined reference system is eventually expected to be

on the order of ± 0.001" and thus better than the FK 4 by at least one

order of magnitude. Furthermore, the system is independent of the

position of the earth's axis and can thus be used to determine precession

and nutation, as well as polar motion and earth rotation (UT 1); cf.

(Shapiro, 1978).

After this review of geometrically defined reference systems

(stellar and extragalactic system) we come now to the discussion of

i hi
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dynamically defined systems which essentially use the equations of

motion of planets, the moon or artificial satellites.

Classical observations to the planets and the moon are used

to determine Ephemeris Time (Section 4) and the rotation of the

celestial system (see above) rather than for defining an independent

reference system. For the latter purposes one uses lunar laser

ranging and precise satellite techniques.

Lunar laser ranging. The motion of the moon in its orbit,

as given by lunar ephemerides, defines an inertial system. It is a

dynamical system as the orbital ephemerides have been computed

using celestial mechanics.

If only laser distances (without reference to the star background)

are measured, then this system is "blind" or self-contained in the

sense that it can be used only for lunar laser ranging. It can, however,

be related to the FK 4 or a similar stellar system using meridian

observations and occultations of the moon, but with a lesser precision

(Mulholland, 1975).

For modelling the motion of the moon, the orbital motion of

its center of mass and the rotation (libration) of the moon is required.

The parameters of these movements are themselves gradually improved

by the lunar laser ranging observations. Eventually, modelling should

be possible to the centimeter level, but there may be a residual long-

term drift due to the secular acceleration of the moon on the order of

5" per century squared.

This system is excellent for periods up to say 10 years. A

comparison on combination with VLBI determined extragalactic systems

appears particularly promising.

Satellite ranging. The same principle of a self-contained dynamical

system may be applied to satellite tracking (laser and doppler).

I It may be argued that celestial systems also contain a dynamical

component since precession and nutation are based on the theory of
motion of the earth.
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Unfortunately, satellite orbits cannot be as accurately modeled as the

lunar orbit due to imperfect knowledge of the gravitational field, radia-

tion pressure, and other effects. Especially the long-term stability

is far less than in the case of the moon. The advantage of doppler

systems is the ease with which continuous observations can be performed.

Such systems have proven useful for the study of short-period

phenomena, especially of polar motion and earth rotation.

Inertial positioning systems. Directions that are constant in

an inertial system (or change in a prescribed way with respect to such

a system) can be realized by means of gyroscopes. Position differences

with respect to such a system are obtained by twice integrating accelera-

tions measured by means of accelerometers. Gyroscopically defined

directions are practically independent on the gravitational field, but

accelerations depend strongly on gravity in view of the Principle of

Equivalence which expresses the impossibility of separating gravitational

and inertial accelerations (Section 4). On the other hand, such a

separation can be performed in second-order gradients, which provides

a means for improving the accuracy of inertial positioning systems

through gradiometry.

Present accuracies (a few decimeters for distances up to 50 kin)

are of considerable interest in geodetic surveying work, as has been

pointed out at the First International Symposium on Inertial Technology

for Surveying and Geodesy in Ottawa, October 1977. They are not yet

suitable, however, to define an inertial reference frame of an accuracy

considered in this report. Inertial positioning systems possess, however,

great potentialities of development and of increase in accuracy by

several orders of magnitude (Draper, 1977).

6. Celestial and Terrestrial Systems

So far we have considered inertial, or stellar, or celestial

systems which are, roughly speaking, at *est with respect to the stars.
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Let us now introduce a terrestrial system which, also roughly

speaking, is at rest with respect to the earth. These two systems

differ primarily by the earth's rotation, but there are also other small

rotations due to precession, nutation, and polar motion.

We shall start with a rather crude definition of a terrestrial

coordinate system xyz, which will later be made more precise. The

origin is at the geocenter, the earth's center of mass. The most

natural choice for the z-axis would be the earth's axis of rotation but,

because of polar motion, the rotation axis slightly changes its position

within the earth's body. Figure 6. 1 shows polar motion as projected

y <CIO (z-axis)

(X = z70 0 )

x

C 'S Y

(z-axis)--

x(X = 0)

Figure 6. 1 : Polar motion

onto a tangent plane at the North Pole of the earth. The celestial pole,

which here represents the instantaneous rotation axis (in the next

section, we shall make a distinction between these two concepts)

describes a roughly circular path. The origin CIO (Conventional Inter-

national Origin) corresponds to the average position of C in the years

1900-1905. The period of C around the origin is about 1.2 years, the

Chandler period.

The z-axis of the terrestrial coordinate system is defined such

as to pass through CIO; thus it corresponds to an average rather than

instantaneous rotation axis. Not only the z-axis is conventional but
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also the x-axis corresponding to the zero meridian (X =0 ; c and X

are geographical latitude and longitude, respectively). This zero

meridian corresponds roughly to the Greenwich meridian; however, it

is implicitly defined through a computational procedure adopted by the

Bureau International de l'Heure (BIH). It is thus called the BIH zero

meridian.

The y axis is directed for X = 900 so that xyz forms a right-

handed system. It should be noted that the conventional expression of

polar motion in terms of the pole coordinates x,y (Fig. 6. 1)is in

disagreement with this global terrestrial system since there the y-axis

is directed towards X = 2700. Thus the y-axis for polar motion has

a direction opposite to the global y-axis; the x-axes are parallel.

Furthermore, as we have said, x and y for polar motion are expressed

in seconds of arc rather than in meters.

The stellar system XYZ is defined as follows. The origin may,

for instance, also coincide with the geocenter (it is then quasi-inertial

rather than inertial, cf. Section 3). The Z-axis is directed along the

instantaneous rotation axis (more precisely, the celestial pole C, see

next section); cf. Fig. 6. 1. The X-axis has the direction of the vernal

equinox, and Y is directed so as to form again a right-handed system.

Since the direction of the rotation axis in space changes because

of precession and nutation (secular and periodic parts, respectively),

the instantaneous celestial system so defined rotates very slowly but

continuously with respect to inertial space and is thus not an inertial

system. However, the system XY Z referred to a certain epoch to

(say 1979, 0) is inertial (apart from galactic rotation, see Section 5).

The transformation from the celestial system XYZ at an epoch

to the terrestrial system xyz at epoch t is effected as follows. Since

the common origin is the geocenter, both systems are transformed

into each other by a rotation:
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[x r X
T oYatn= A _ Y (6-1)

The rotation matrix A may be split up as the product of 4 rotations:

A = WRNP (6-z)

which have the following meaning.

The matrices P and N express the effect of precession and

nutation, respectively. The result of multiplying the vector (X, Y, Z) by

the product NP is to transform the system from the initial epoch to to

the actual epoch t under consideration. Initially, the Z-axes coincided

with the (mean) celestial pole at time to, after transformation by NP,

it coincides with the (true) celestial pole at time t. Also the X-axis,

passing through the vernal equinox, changes correspondingly.

Expressions for P and N can be found in (Mueller, 1969, pp.

62-79). The problem of the celestial pole and precession and nutation

will be taken up again in a more precise way in the following section.

The matrix R expresses the main motion of the earth-fixed

system xyz with respect to the space-fixed system XYZ: the earth's

rotation. It has the form

cose sin 0 0

R = -sin 8 cose 0 (6-3)

L0 0 1

where 9 is Greenwich Apparent Sidereal Time (GAST); cf. (Mueller,

1969, p. 139). It is related in a simple way to Universal Time, UT

more precisely to UTO which is not yet corrected for polar motion

(ibid., p. 164)f note that, before as well as after this transformation,

I A general geometric treatment of transformations between reference

frames is found in (Grafarend et al., 1978).
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the z-axis is the instantaneous rotation axis.

A final transformation is effected through multiplication by the

matrix W which expresses the effect of polar motion, also called

polar wobble. It has the form

1 0 x

w= 0 1 -y (6-4)
-x y 1

where x,y are the coordinates of the pole in the system of Fig. 6. 1.

Precession and nutation are regular enough to be fairly accurately

modelled by analytical expressions with coefficients that are partly

empirical and partly come from theory; see Section 7. Polar motion

is so irregular that it can only be determined from observations. In

view of small irregularities of the earth's rotation, the same holds

here, too. This will now be briefly reviewed.

Polar motion and earth rotation. Both phenomena are closely

related. The earth's rotation can be expressed by means of the rotation

vector w which has the direction d the rotation axis and the length w

which is the angular velocity of the earth's rotation. Then polar motion

expresses the variation in the direction of w and irregularities in the

earth's rotational velocity express the variation of the length of .

The classical book on this subject is (Munk and MacDonald, 1960).

Later developments are reviewed in (Rochester, 1973) and (Lambeck, 1978).

All these authors primarily discuss geophysical aspects.

Polar motion has been determined by the International Latitude

Service (ILS) established in 1899 and expanded in 1962 as the International

Polar Motion Service (.PMS). ILS comprises 5 stations distributed

along the parallel 39008 ' , which have been continuously operating since

1899 until now since they also form part of IPMS (which comprises some

75 instruments).
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Modern techniques for determining time and polar motion are

doppler and laser ranging to artificial satellites and to the moon, and

VLBI. Present accuracy in the pole position is on the order of lm

(0.03") (Capitaine and Feissel, 1975): modern techniques give 0.01"

(Carter, 1978; Robertson et al., 1979) and are expected eventually to

provide 0.002" in pole position and 0. 1 msec in UT (Aardom, 1978).

The continuing importance of the ILS stations rests in the con-

tinuity of the observations of polar motions since 1899; the Conventional

Internation Origin (CIO) for polar motion is based on these observations.

A review of polar motion services is (Guinot, 1978); many

details can be found in papers collected in (Kolaczek and Weiffenbach,

1975). A recent reference on theoretical problems of the earth's

rotation is (Guinot, 1979).

7. The Celestial Pole

In the preceding section we have only distinguished the instantane-

ous rotation axis and a mean rotation axis such as defined by CIO, and

have identified the Celestial Pole, to which precession and nutation

refer, with the instantaneous rotation axis. For higher accuracies

this is no longer satisfactory and more precise distinctions must be

made, according to developments made within the last two years and

leading to a new system for precession and nutation adopted by the

International Astronomical Union at its General Assembly in Montreal

in August 1979.

A very clear presentation of the prldciples is found in (Leick,

1978) and (Leick and Mueller, 1979). We can here only describe the

basic results and refer the reader for details to this work.

Formerly a rigid earth model formed the basis of a theory of

precession and nutation (Woolard, 1952). The earth model on which

the IAU resolution of 1979 is based is elastic with a liquid core. As

an introduction we shall first discuss the case of a rigid earth and
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~O=F

Figure 7. 1 : Body-referred motions for a rigid earth

then the more complicated elastic earth model.

Rigid earth. Let us look at the earth in the vicinity of the

North Pole from above, similarly as in Fig. 6. 1), see Fig. 7. 1.

We shall use the following abbreviations:

F figure axis,

I = instantaneous rotation axis,

H = angular momentum axis,

EO = Eulerian pole of rotation,

C' = celestial pole.

The figure axis F (we do not distinguish between an axis and its pole

which is its intersection with the celestial or terrestrial sphere) is

the axis of maximum inertia; if the earth were a precise ellipsoid of

revolution, then F would denote its axis of symmetry.
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The axis H corresponds to the direction of the angular

momentum which plays a basic role in the dynamics of a rigid body,

as well known from mechanics (cf. Synge and Griffith, 1942, Chapter 14).

The poles E0 and C' are explained as follows. If there were

no external forces acting on the earth, then C' = H and E 0 = I, and

C' and E0 would describe circles around F as shown in Fig. 7. 1. The

outer circle represents the motion of the instantaneous pole (in the

force-free case coinciding with E0 ) around the figure axis F. In fact,

both circles are almost undistinguishable since E 0 and C are practically

coincident (C'E 0 2 2 cm).

Due to the action of external forces, namely the attraction of

sun and moon causing precession and nutation, H is different from C'

and I is different from E0 . The angulum momentum axis H describes

a circle (actually, a more complicated but known closed curve) around

C', and I does the same around F 0 . The period of the "free" motion

of C' and E 0 is the Euler period of about 300 days, whereas the period

of the "forced" motions of H around C' and of I around E 0 is about

one day (since sun and moon remain almost in the same place when

the earth performs one rotation); in the latter case, we speak of

diurnal motions.

Some remarks about magnitudes: The radius of the "free" polar

motion, FC' - FE 0 , is on the order of 6m , whereas the radius of

the "forced" motion is smaller by one order of magnitude, namely

C'H E--0 1 60 cm. The points H and I are very close together,

namely HI- 1.5 cm; the same holds for C'E 0  2 2 cm as we have

already remarked.

Figure 7. 1 shows that all points on the line FE0 have no diurnal

polar motion (i. e. , forced borlv-referred motion due to external forces

and having a nearly diurnal period). Of all points of this line, only

the point C' has the property that its motion in space is computable

independently of Chandlerian polar motion (i. e. , free polar motion in the

absence of external forces). It may be shown that this is equivalent to the fact
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that C' has no diurnal nutation in space.

Regarding terminology it should be noted that body-referred

periodic motions are called "polar motion" and space-referred periodic

motion are called "nutation".

Elastic earth. In the more realistic case of an elastic earth,

Fig. 7. 1 must be modified as follows (Fig. 7. 2). The angular

momentum pole H and the instantaneous rotation pole I again describe

circles (actually, more complicated closed curves) around C' and E 0 ,

respectively; this is a forced motion (due to external forces); the

radii of these circles are again around 1/2 m. Due to the free

Chandlerian motion, the points C' and E0 again describe a radius on

Figure 7.2: Body-referred motions for an elastic earth.
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the order of 6m ; now, however, the center 0 of these circles no

longer coincides with the axis of figure.

In fact, the non-coincidence of axis of figure in the Chandlerian

motion causes an elastic deformation of the body, which causes the

axis of figure (axis of maximum inertia) to deviate from the center 0;

it has the position S in Fig. 7.2 (OS Zm). The figure axis would be

in S if there were only a free motion; due to the forced motion (attraction

of sun and moon which also causes precession and nutation), the axis

of figure F describes a circle (again, actually a more complicated

closed curve) around S; the radius of this circle is very large,

around 60 m. (It is easy to remember: E0 -- 60 cm,

OC' - OE0  6 m, SF = 60 m L) Thus, S represents the mean

position of F because of for c ed motion, and 0 is the mean position

of S because of free motion.

It can be shown (Leick, 1978, p. 40) that F, H, and I lie on a

common straight line.

Thus, the attraction of sun and moon cause the figure axis F

to deviate by around 60 m from a mean position, whereas the same

forces displace H and I only by 60 cm. This renders the axis of

figure completely unsuited to serve as an axis of reference.

The periods of forced rnotion (of F, H, and I) are about 1 day,

the period of free motion of S, C' and E0 around 0 is the Chandler

period of about 430 days.

Again, the point C' is distinguished by the fact that it

has no diurnal motion, neither with respect to an earth-fixed system

nor with respect to inertial space. It is, therefore, well suited to

play the role of celestial pole.

More realistic earth models consider a liquid core (Melchior,

1978, Chapter 6). In this case, the celestial pole refers to the solid

shell (it may then be denoted by C").

IFor an elastic earth, C'14 H- 0. 7EoI 1 40 cm.
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The present definition of the celestial pole is independent of

any earth model and may even be used for the real earth: The

celestial pole C corresponds to the ax is which has neither periodic

diurnal body-fixed nor space-fixed motions. The body-fixed motions

of C are called polar motion; the space-fixed motions of C are precession

and nutation.

This definition is even more natural in view of the fact that

most astronomical measurements refer to this pole (Leick, 1978;

Leick and Mueller, 1979; Kinoshita et al., 1979).

New IAU nutational theory. At its recent General Assembly in

Montreal, August 1979, the IAU has adopted a new theory of nutation.

It is computed for the "Celestial Ephemeris Pole" which is the celestial

pole C as defined above. The earth model underlying the new nutational

coefficients is Molodensky's Model II which features a solid inner and

liquid outer core (cf. Melchior, 1978, pp. 153-156). More details can

be found in (Seidelmann et al., 1979). An indication of the accuracy

of this new theory is provided by the fact that, for the most recent

earth model by Wahr (1979), the nutations differ from Molodensky's

model by up to 0.002" (about 6 cm); cf. (Wahr and Smith, 1979).

8. Tidal Effects

The principal time variations which can be modeled in the sense

of Section 2, are the solid earth tides.

The tidal potential, caused by the attraction of sun or moon, is

(Melchior, 1978, p. 10)

r 2

U = G;I r2 P 2 (cos z), (8-1)

where G is the gravitational constant, A denotes the mass of the dis-

turbing body (sun or moon), r is the radius vector of the point P at

which U is considered, d is the distance between the geocenter and

the disturbing body, P. is the Legendre's polynomial of second degree,

z is the geocentric zenith distance of the disturbing body expressed by
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cosz - cos8 sin6 + sin 8 cos 6 cos (hG-X) . (8-2)

Here 8 and X are polar distance and longitude of P, where

6 = 90 0 -w , (8-3)

cp being the geographical latitude; 6 is the declination of the disturbing

body, and hG is its hour angle reckoned from the zero meridian.

The addition theorem for Legendre polynomials (Heiskanen

and Moritz, 1967, p. 33) gives

Pz (cos z) = Pz (cosW) P2 (cos 8) +

+ l/3[R1 (6, hG)R,(e.) + s21(6, hG)SzI (eX)]

+ i/1a [R2 (69 hG )Rzz(, X) + Sz (6, h G)S, (8,X)],

(8-4)
where

R (,X) = P nm(cos ) cos M,nmrn (8-5)

Sr(8, X) P m(co s ) sin m X,

P denoting the Legendre function of degree n and order m. Thenrn

Rnm(6 , hG) and Snm( h G) are defined'in the same way, with (6,,\)

replaced by (6 , h G ); here

6= 90 - 6

denotes the complement of declination (the polar distance) of the

disturbing body.

Now (8-4) is substituted into (8-1) and I/d 3 and R nm(6, h G) and
S nrn h hG ) are represented as functions of time t using the theory

of the motion of sun and moon. The result has the form

U = a jtZ0( ,X ) + a R Z ( ,X ) + a 3S ZI( , X,) +( 8 6
(8-6)

+L ~(,)+ ~(,)
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where the coefficients

a. = a.(t) (8-7)

are functions of time, which may be represented as series of trigono-

metric functions:

a (t) = a. + I a.. cos .t+ I b.. sin .t . (8-8)
1o j=l 1 3  1 j=l 13 j

Thus the tidal potential at the earth's surface, regarded as a

sphere (r = const.), is given by 8-6) together with (8-8). It has the

form of a linear combination of spherical harmonics of the second

degrees whose coefficients are quasi-periodic functions of time; cf.

(Melchior, 1978, Chapter 1).

Elastic deformation. In the case of a purely elastic earth, a

point P on its surface undergoes a quasi-periodic displacement (on

the order of ± 0.5 m) expressed by the displacement vector uwhose

components in polar coordinates (r,6,X,) are given by

hu = -U,
r g

A U
Ue = g (8-9)

X g c os Y0 F X

Here g denotes a mean value of gravity (g 980 gal), and h and A are

constants called Love numbers.

The deformation of the earth causes its gravitational potential to

change by 6V = kU, where k is a third Love number. In space, this

I The second degree is dominant in the tidal potential; higher-degree
harmonics can be treated in the same way.

L.q
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induced potential is a harmonic function:

8V = k(_3 [a1 (t)R2 o( , X) +6r

(8-10)
+ a,(t)R2i(6,X) + a3(t) s?9(8,) +

+ a4(t)R2 z(e,X) + a 5 (t) SZ7(8,X;)].

Conventional average values are

h = 0.60, k = 0.30, A = 0.08 . (8-11)

Variation of Love numbers with frequency. The earth's liquid

core produces rescnance effects which render the Love numbers depen-

dent on the frequency w i (Melchior, 1978, Chapter 6); we have now

h. h(w.), k. = k(.), I. : (W.) (8-1Z)

3 3 J J

Thus the expression (8-10) for the potential disturbance 6V must be

modified:

5 00

6V = [kOai 0 + k.(a..cos w. + b.. sin t)]. Yi(, ),
3 j 1 j 1

(8-13)

where Y1(8,k) = Rz 0(e,X), Y.(e,X)= Rzl(,X), etc. The displacement

components (8-9) will be described by analogous expressions, with h.3
and £ instead of k..J3

The constant k0 in (8-1 2 ) deserves some discussion. It

corresponds to a permanent deformation independent of time. In the

case of a purely elastic earth, all k. including k0 are equal to the samej

constant k - 0.30; see (8-11). If the earth were fluid, then
k0 = k 4- 0.96, (8-14)

f

which is called secular Love number (Munk and MacDonald, 1960,

pp. Z5-26). There is a marked contrast between the elastic Love
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number 0.30 and the secular Love number 0.96. It is sometimes

argued that the secular Love number (8-14) or some intermediate

value between k and kf should be used as k0 in (8-13). For relevant

discussions see (Munk and MacDonald, 1960, p. 27) and(Groten, 1970).

The modern earth models (Molodensky; Wahr, 1979) all give k0

close to 0.30. Therefore, and for other reasons, the author thinks

that the secular Love number (8- 14) should not be used in tidal computa-

tion s.

Computation of the tidal correction. If the displacement com-

ponents (8-9) have been computed, then the corresponding tidal variations

in the rectangular coordinates xyz are obtained by a rotation:

6x sincp cosX -sin X cosy cos X u]

6y sin (p sinX cosX cos Y sin X Ux

5z -cos 1P 0 sinCP r

(8-15)

The corrected values of x = [x,y,z] are then obtained by

x = x measured - 6x. (8-16)

The values x so obtained are theoretically free from the effect of tides;

they should be constant in time, provided the model underlying the

tidal corrections is adequate.

Why should the model not be adequate? The direct tidal potential

(8-1) or (8-6) is independent of the internal structure of the earth and

can, therefore, be calculated with a high degree of precision. The tidal

response, that is, the deformation vector u and the induced potential

6 V depend, however, essentially on the earth's internal structure and

physical properties. As we have seen, the Love numbers h, k, I would

be constant and independent of frequency if the earth were purely elastic;

the liquid core makes the Love numbers dependent on frequency. They
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can be calculated on the basis of some assumed earth model; an

empirical determination, which would be independent of such earth

model assumptions, is not at present feasible with the accuracy

necessary to predict tidal effects on the centimeter level.

A further complication is caused by the fact that there are

local disturbances due to interaction of solid tides (considered here)

and ocean tides, the so-called ocean loading effects)(Melchior, 1978,

Chapter 11), and other local perturbations (ibid., Chapter 12).

Even if these effects are taken into account computationally as

well as possible, it does not seem possible to compute, on the basis

of available tidal models, the tidal displacement of the position vector

x to the desired accuracy of 1-2 cm. Errors may well reach

magnitudes ten times as high.

A solution would be to monitor tidal effects on x, y, z at certain

stations, obtaining observed values of 6x, 6 y, 6z and to compute

corrections

6 observed- x computed

which can then be interpolated at other stations (E. Groten, personal

communication).

One might also consider tidal models in which h and k depends,

not only on frequency, but also on position (8,X) on the earth's surface

as suggested by Kaula and (Groten, 1979, Vol. II).

In principle, h could also be obtained locally by a combination

of gravimetric observations, which give 1 + h - 3k/2, and horizontal

pendulums, which give 1 + k-h; the Love number L can be found by

extensometer measurements. If the values of h and I so obtained were

sufficiently accurate to be used for modelling the displacement vector

u , this procedure might be simpler than the monitoring of x, y, z

themselves.



-44-

The Honkasalo term. The constant term a. in (8-8) is
10

independent of time and causes a "permanent deformation". Actually,

only the coefficient as0 associated with the zonal harmonic Rz0($,X) =

PZ(cos 8) is different from zero, increasing, so to speak, the flattening

of the earth. It has been suggested by Honkasalo (1964) to correct

only for the time-dependent part of the tidal effects, leaving the

permanent deformation.

This innocently looking procedure has, however, far reaching

consequences as pointed out by Heikkinen (1979). In fact, it means

that, e.g., in the case of the moon, the lunar attraction is not

completely removed but a residual effect is left which can be physically

interpreted by uniformly distributing the moon's mass along the lunar

orbit.' This means, however, that sun and moon are not completely

removed computationally, so that the external gravitational potential

is no longer a harmonic function in outer space as presupposed in the

usual methods of physical geodesy (the level ellipsoid, Stokes' formula,

Molodensky's theory, least- squares collocation, etc.).

For this reason it is much simpler to remove the total tidal

effect, including the permanent deformation, which corresponds to the

application of formulas such as (8-1) and (8-6) together with (8-8). If

the permanent deformation is not removed, matters become so compli-

cated that confusions are almost inevitable.

At any rate, an official decision of the IAG on this point is highly

desirable and is expected at the IUGG General Assembly in Canberra,

December 1979.

2 More precisely, the moon's orbit must be projected onto the equa-
torial plane and replaced by an average circle, on which the moon's
mass is then distributed.
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9. Terrestrial Reference Systems

As we have already remarked at the end of Section 2, the

problem of introducing an appropriate, rigorously defined terrestrial

coordinate system is complicated by the fact that there is no such

system in which all points of the earth's surface would be at rest.

Points are continuously moving because of tidal effects, plate motion,

local tectonic disturbances, etc. All that can be hoped for is that a

coordinate system can be defined at which the stations are at rest in

some average way.

This problem can certainly be solved, but there are many

possible solutions. At present, there is considerable controversy in

this respect, as the proceedings of a recent meeting on this subject

show (Kolaczek and Weiffenbach, 1975).

It is, however, generally agreed that even a future, more

precisely defined, reference system should be close to the presently

used system. This means that the origin should coincide with the

geocenter (the earth's center of mass), or correspond to some average

position of the geocenter; the z-axis should be directed along some

average position of the rotation axis, and the zero meridian should be

close to the mean Greenwich meridian.

The origin. The geocenter is uniquely defined physically as the

center of mass of the earth. It is indirectly accessible to observation

using one or the other of two physical phenomena:

1) The geocenter is at a focus of the orbital ellipse of a

satellite (perturbations of satellite orbits do not essentially change the

picture).

2) If the geocenter is made tu be the origin of a spherical-har-

monic expansion of the earth's gravitational potential, then all first-degree

terms of this expansion vanish (Heiskanen and Moritz, 1967, p. 62).
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For a precise absolute practical determination of the geocenter,

the first phenomenon is appropriate. The accuracy depends on the

precision with which the orbit is practically defined.

The second phenomenon provides an excellent means for monitoring

changes in the geocenter, as has been pointed out by Mather (1973) and

(Mather et al., 1977). At any point (S,X ) the earth's surface, gravity

changes because of a shift 6x of the origin by

6g = c(6x cos (P cos X + 6y cos T sinX +8z sin(P) (9-1)

where

c = -3.08 I gal cm - 1 . (9-2)

Although three stations would, in principle, sufficient to determine

6x, 6y, 6z from observed changes 6g, a larger number of well-

distributed observatories, continuously observing absolute g, is

necessary to separate geocenter motion from other effects. Mather

advocates a minimum of 25 globally distributed absolute gravity stations.

Various definition of coordinate axes. Various choices of axes

have distinguished physical properties, as pointed out in (Munk and

MacDonald, 1960, pp. 10-12).

Tisserand axes. For a rigid body rotating with the angular

velocity vector w, the velocity of any particle is

v = Wxx (9-3)

which is the vector product of W with the position vector x. For a

deformable body this relation cannot be satisfied in general; there will

be a difference

= v- ujx (9-4)

If w is defined in such a way that

z CdM minimum, (9-5)

earth

L - I I
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dM being the mass element, then any system xyz rotating with this

angular velocity w is a system of Tisserand axes.

The minimum property (9-5) is, of course, some kind of least-

squares condition and should, therefore, have a certain appeal for

geodesists.

Such a system also has the property that the total angular

momentum due to motion relative to the system is zero.

It should be noted that in the case of Tisserand axis, only the

rotation of the frame, that is, its motion, is specified. The direction

of the axes is arbitrary in the sense that a system whose axes are

oriented in a fixed way relative to a Tisserand system (differ from

it by a constant rotation) is also a Tisserand system.

A Tisserand frame is very suitable for formulating the equations

of motion for the earth, the Liouville equations, because they assume

a particularly simple form in such a system: they are then, for a

deformable body, formally the same equations as for a rigid body.

Disadvantages are that wind and other relative motion may slightly

rotate the Tisserand axes relative to observatories, and it is difficult

to formulate mathematically relative motion in such a frame.

The exact practical realization of a Tisserand frame for the

real earth seems hardly feasible. It should, however, be pointed out

that, for the elastic model discussed in Section 7, the point 0 in Fig. 7.2

(as well as any other point rigidly connected to it) corresponds to the

z-axis of a Tisserand frame. Since this point is not subject to polar

motion, it is a natural choice for this axis. For the real earth, the

z-axis should, therefore, be selected close to such a point, and the

xyz system should be close to a Tisserand frame.

Principal axes of inertia. These axes defined in such a way that

the inertia tensor is diagonal in this system; the products of inertia

are then zero (cf. Heiskanen and Moritz, 1967, p. 62). They are
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natural generalizations of axes of symmetry (e.g. for the triaxial

ellipsoid) to an arbitrary body and are, therefore, also called figure

axes.

In the case of the earth, the equatorial principal axes (x and y)

are ill defined since the earth is very close to an ellipsoid of revolution.

Even the polar axis of inertia is unsuited for a precise

definition of the z-axis because of its instability: the point F, to which

it corresponds, oscillates with respect to the earth by as much as

60 m (Section 7).

However, as Fig. 7.Z shows, the point O corresponds to a

mean position of the figure axis; it is also a Tisserand axis. An axis

close to this point will thus also be close to a mean figure axis.

If the z-axis coincides with the (mean) figure axis, then the

spherical-harmonic coefficients of degree Z and order 1 must vanish

(on the average). Since actual satellite and gravity observations will

correspond to such an average, it will be reasonable to enforce the

condition that the two coefficients of degree Z and order 1 vanish. In

this way it will be ensured that the z-axis coincides approximately

with the mean polar figure axis. It is clear that the accuracy of such

a procedure is low (around 10-') so that a definition precise to 10- 8

cannot be achieved in this way.

Mather axes. In his thorough discussion of precise terrestrial

reference systems, Mather (1973) proposed the following definition.

The origin is at the (instantaneous) geocenter; the z-axis coincides

with the instantaneous axis of rotation; and one fixed station P on the

earth's surface determines the xz-plane (this plane either passes through

P ro P has an assigned fixed longitude).

This is perhaps the conceptually clearest and most natural

definition of a geodetic reference system. Everything -- the origin

the z-axis, and the xz-plane -- is unambiguously defined physically.

Its main merit lies in presenting a clear theoretical model. For practical
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purposes it appears less suited since the instantaneous rotation axis I

is not fixed within the earth's body (Section 7). Thus, even if the

earth were rigid, the coordinates xyz of any point of the earth's

surface would undergo periodic changes which would not correspond to

any movement of the point but merely reflect the variation of the

coordinate axes.

The identification of the z-axis with the celestial pole C, rather

than with the instantaneous pole I, would remove the diurnal variations

in the coordinate system but still leave its variation due to polar motion.

Also, C is observable rather than I (Section 7).

Therefore, the z-axis should rather be directed along a mean

position of C, which would be the point denoted by 0 in Fig. 7.2.

This point denotes at the same time a mean axis of figure and a mean

Tisserand axis as we have seen.

As for te point P held fixed, it is clear that tidal motions

have to be removed. A difficulty remains: residual unknown motions

(plate motions, local tectonic displacements) are reflected as spurious

changes in the coordinates of all terrestrial points. It appears,

therefore, desirable to define the coordinate system with respect, not

to one point, but to several reference points, hoping that irregular

displacements of individual points somehow average out. This leads us to:

Geographical axes. According to (Munk and MacDonald, 1960,

p. 11), geographical axes are attached "in a prescribed way" to certain

observatories. A rigorous definition in this sense would be the following.

Assume N stations (observatories) on the earth's surface. The

coordinates xi = (x., y., z i), i = 1,2, ... , N, of these stations,

referred to a certain epoch to, are given; the coordinate system So

is, in principle, arbitrary.

At a subsequent epoch, say ti, the rectangular coordinates of

the same N stations are again determined by observation; this gives
S , Xl Tthe values x. =(x i , yi , zi ) " They are referred to a coordinate system

il i a i il r . . ... ,i i " -I " i 'Ii Ii - 'i lli 1
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S' which is not the same as the former system So . The system S'

is assumed to be arbitrary and unrelated to S0 .

If the configuration of the N stations did not change with time,

then there would be a certain rotation matrix R such that

Rx' = x. (9-6)

for all N stations.

In view of relative motion of the stations, however, such an

equation will not be exactly satisfied; there will be deviations

E = Rx' - x (9-7)

Now the three parameters defining the rotation matrix R (for instance,

three Eulerian angles) can be determined by means of the condition

E TPE minimum (9-8)

with a given positive definite weight matrix P. I

This determines, R, and now the coordinates x of any point

in the new system S' can be transformed to the original system So by

(9-6). For the given stations, the comparison of the original with the

transformed new coordinates will indicate the amount by which the

stations have moved (assuming there are no observational errors); and

the coordinates of other points are in this way transformed into the

original system So.

Thus, the coordinates at any instant t can be unambigously

related to the original system So . The coordinate system is related,

not to any physically defined axes, but "in a prescribed way" to the

N given observatories.

In the case of errorless observations, the formal "least-squares

adjustment" by means of (9-8) does nothing else but ensure that the

I The minimum condition (9-8) is, in a way, a discrete analogue to
the Tisserand condition (9-5).
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configuration of the N stations at epoch t1 is fitted as closely as possible

to the original configuration of these stations. The "prescribed way"

implies the use of the same N stations and of the same matrix P at

all epochs under consideration.

It is clear that tidal effects and other systematic phenomena

which can be modeled have to be removed; the least-squares fit is made

for the residuals 6x(t) in the notation of eq. (2-6).

If there are observational errors, then, of course, the procedure

averages their effect as well as that of actual displacement. The

weight matrix P may then be chosen such as to take into account

statistical characteristics of the measuring errors.

Each of these four definitions -- Tisserand axes, figure axes,

Mather axes, and geographical axes -- contain important aspects

which must be incorporated in an optimal definition of a terrestrial

reference system.

Geographical axes seem best to correspond to the practical

requirement that the adopted station coordinates do not change

with time. They can also be realized observationally in a theoretically

rigorous way.

The arbitrariness of the initial coordinate system So can be used

to relate the z-axis to the earth's rotation axis. For the elastic earth,

the point 0 in Fig. 7.2 represents the long-term average of the rotation

axis, of the celestial pole, and of the figure axis; it is, furthermore,

a Tisserand axis as we have remarked above.

For the real earth, there is no longer a unique point 0 which

has all these physical properties. Therefore, the z-axis will be defined

conventionally in such away as to be close to a mean rotation axis and

a mean figure axis. If it turns out that the geocenter shifts significantly

with time, then the origin will also have a conventional position (defined

by the N reference stations) close to the geocenter.
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Thus, the system will be a conventional system close to a

physically defined one; it is also an average system in view of

condition (9-8). This relates the present concept of a terrestrial

reference system to the ideas presented in Section 2.

Present system. The present internationally adopted system is the

BIH system described by Guinot (1978). The Conventional International

Origin (CIO) for polar motion, adopted in 1967, which defines the

z-axis of the terrestrial coordinate system, is based on the continuous

(since 1899) observations of the 5 stations of the ILS. The CIO

approximately corresponds to the mean pole during the period 1900-

1905. The ILS observations, through less accurate (around 1 m) than

modern methods for polar motion determination, provide long-term

stability.

The basic equations for polar motion are

C = 0obs - x cosA + y sinA, (9 - 9)

A = Aob s -(x sin A + y cos A) tan 4 , (9- 10)

where 0 and A are astronomical latitude and longitude referred to the

basic terrestrial system xyz, 0ob and A are the observed values
obs obs

referred to the instantaneous celestial pole C, and x and y are the

coordinates of the pole referred to CIO, not to be confused with rectangular

cuordinates xyz (Section 6).

The method of determining polar motion used by ILS consists in

keeping Ofor the five latitude stations fixed, assigning to them con-

ventional values. Then each of these stations gives an observation

equation of form (9-9). A least-squares adjustment of these 5 equations

for x and y then determines these two polar coordinates; cf. (Fedorov,

1979, p. 96).

If is evident that this procedure is rather analogous to that

represented by (9-7) and (9-8), with the geographical latitude 0 instead

of cartesian coordinates xyz.
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Similarly, the BIH zero meridian represents an average over

about 50 time service stations (Mueller, 1969, p. 343) and thus pro-

vides an analogue to the minimum principle (9-8) but applied to

observed longitude A (or, equivalently, Universal Time).

Since 1962, when the ILS was reorganized into the IPMS,

many more latitude stations (around 50) contribute to defining the pole

than before. The accuracy is now on the order of 0.2 m, about 3 times

better than for the ILS (Guinot, 1978, p. 14).

We may thus say that, from a conceptual point of view, the

present BIH system represents geographical axes as defined above, but

with the least- squares fitting applied to 0, A rather than to x, y, z.

Future requirements. For a more precise definition, at the

centimeter level, satellite laser and interferometric methods determ-

ining cartesian coordinates xy, z seem to be better suited than

astronomical coordinates %, A. whose accuracy can hardly be essentially

improved beyond the present level.

The best approach seems to be that systematic effects (tides,

plate motion, etc.) should be modeled as far as possible, and that

residual, more or less random, motions and similar effects should be

taken into account by averaging over a certain number of given stations.

This corresponds to the procedure described above, eqs.(9-7) and (9-8).

For a consistent definition it would be desirable that one uses

always the same N stations, the same observation techniques, and the

same weight matrix P.

The system thus defined is conventional in the sense that the

underlying coordinate system So as defined above is, in principle,

arbitrary.

It should, however, be related to the present system in such a

way as to preserve continuity. A link between a cartesian system S.

and the presently used 0, A- system is provided by the determination of

polar motion by modern methods such as doppler, laser, and VLBI

which are related to such a cartesian system.
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The system So should be made geocentric by incorporating

dynamic satellite observations. To be precise, it should be geocentric

at the initial epochs to. The possibility cannot be excluded that,

at later epochs, the geocenter has slightly shifted with respect to the

frame So which continues to be defined by the N basic stations. Such

a shift can be monitored by absolute gravity measurements as mentioned

above.

The basic terrestrial cartesian frame also provides the orienta-

tion of the reference ellipsoid (lAG, 1970; Moritz, 1975, 1979).
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